Intensity Coding
  • HOME
  • TUTORIALS
    • Python
    • Natural Language Processing
    • Generative AI
  • ABOUT US
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer

Python

Booleans and Number in Python

Python
Python
  • Introduction To Python
  • Write Your First Python Program
  • Indentation And Comments in Python
  • Variables in Python
  • Data Types in Python
  • Booleans and Number in Python
  • Operators in Python
  • Mutable Vs Immutable Objects And Collection in Python
  • Python String
  • Python Lists
  • Python Tuples
  • Python Sets
  • Python Dictionaries
  • Python Control Statements
  • Python Functions
  • Python Lambda Functions
  • Python Exception Handling
  • Python File Handling
  • Python Modules
  • Python Package and PIP
  • Python Keywords
  • Python Built In Functions
  • Introduction To Object Oriented Programming Python
  • Python Classes and Objects
  • Python Inheritance
  • Python Encapsulation
  • Python Regular Expressions (RegEx)
  • Python JSON
  • Python Datetime

Python Booleans¶

  • Boolean values in Python represent one of two values : True and False.
  • Booleans are often used for conditional statements, comparisons, and controlling the flow of a program.

Boolean Values:¶

  • In Python, True and False are reserved keywords representing the boolean values.
In [ ]:
x = True
y = False

Boolean Operators:¶

  • Python provides several operators for working with boolean values.

    • and: Returns True if both operands are True.
    • or: Returns True if at least one operand is True.
    • not: Returns the opposite of the boolean operand.
In [ ]:
a = True
b = False

result1 = a and b  # False
result2 = a or b   # True
result3 = not a    # False

print(result1)
print(result2)
print(result3)
False
True
False

Comparison Operators:¶

  • You can compare values using comparison operators, which return boolean results.
==: Equal to
!=: Not equal to
<: Less than
<=: Less than or equal to
>: Greater than
>=: Greater than or equal to
In [ ]:
num1 = 5
num2 = 10

result1 = num1 == num2   # False
result2 = num1 < num2    # True
result3 = num1 != num2   # True

print(result1)
print(result2)
print(result3)
False
True
True

Conditional Statements:¶

  • Booleans are commonly used in conditional statements like if, elif, and else to control program flow.
In [ ]:
age = 20

if age >= 18:
    print("You are an adult.")
else:
    print("You are a minor.")
You are an adult.

Boolean Conversion:¶

  • You can convert other data types to boolean using the bool() constructor.
  • In general, empty sequences (e.g., empty lists or strings) and numeric zeros are considered False, while non-empty sequences and non-zero numbers are considered True.
In [ ]:
bool_var = bool(0)      # False
bool_str = bool("Hello")  # True
bool_var1  = bool(15)

print(bool_var)
print(bool_str)
print(bool_var1)
False
True
True

Boolean Functions:¶

  • You can create functions that return boolean values based on certain conditions.
In [ ]:
def is_even(number):
    return number % 2 == 0

print(is_even(4))   # True
print(is_even(7))   # False
True
False
  • Python also has many built-in functions that return a boolean value, like the isinstance() function, which can be used to determine if an object is of a certain data type
In [ ]:
x = 200
print(isinstance(x, int))
True

Truthy Values:¶

  • Values that are considered True in a boolean context:
    • Any non-empty string: "hello", "0", "False", etc.
    • Any non-zero number: 1, -1, 3.14, etc.
    • Any non-empty list, tuple, set, or dictionary: [1, 2, 3], ("apple", "banana"), {1, 2, 3}, {"key": "value"}.
In [ ]:
# Truthy values
if "hello":
    print("This is a truthy string.")

if 42:
    print("This is a truthy number.")

if [1, 2, 3]:
    print("This is a truthy list.")
This is a truthy string.
This is a truthy number.
This is a truthy list.

Falsy Values:¶

  • Values that are considered False in a boolean context:
    • Empty strings: "" (an empty string is falsy).
    • The number 0 (zero is falsy).
    • Empty collections: [] (empty list), () (empty tuple), set() (empty set), {} (empty dictionary).
In [ ]:
# Falsy values
if "":
    print("This is an empty string (falsy).")

if 0:
    print("This is the number 0 (falsy).")

if []:
    print("This is an empty list (falsy).")
In [ ]:
# None also return false
bool(None)
Out[ ]:
False

Python Number¶

  • Numbers in Python come in different types, including integers, floating-point numbers, and complex numbers.

  • In Python 3, there are three main numeric types:

Type Description
int Represents integers (positive, negative, or zero).
float Represents real numbers with decimal points (floating-point values).
complex Represents complex numbers in the form x + yj, where x and y are real numbers, and j is the imaginary unit.

Examples:

int float complex
5 0.0 3.14j
-9 15.20 45.j
0x64 -32.54e100 3e+26j
0b1010 2.75E3 -.6545+0j

Note:

  • Prefix 0b → binary
  • Prefix 0o → octal
  • Prefix 0x → hexadecimal
  • Scientific notation uses e or E (e.g., 1.2e3 = 1200.0)
In [1]:
# Integer
a = 1
print(a, type(a))    # Output: 1 <class 'int'>

# Floating point number
b = 1.65
print(b, type(b))    # Output: 1.65 <class 'float'>

# Scientific notation
c = 40e1   # 40 × 10¹ = 400.0
print(c, type(c))    # Output: 400.0 <class 'float'>

# Complex number
d = 1 + 2j
print(d, type(d))    # Output: (1+2j) <class 'complex'>

# Real and imaginary parts of complex number
print(d.real)  # 1.0
print(d.imag)  # 2.0
1 <class 'int'>
1.65 <class 'float'>
400.0 <class 'float'>
(1+2j) <class 'complex'>
1.0
2.0

Functions for Data-Type Conversion¶

  • Python provides several built-in functions for converting data from one data type to another. These functions return a new object representing the converted value, leaving the original object unchanged. Here are some commonly used data type conversion functions:
Function Description
int(x [, base]) Converts x to an integer. If x is a string, the optional base specifies the numeral system (e.g., base 2 for binary, base 16 for hex).
float(x) Converts x to a floating-point number.
complex(real [, imag]) Creates a complex number with the specified real and imaginary parts.
str(x) Converts object x to a string representation.
repr(x) Converts object x to a string that can often be used with eval() to recreate the object.
eval(str) Evaluates a valid Python expression string and returns the resulting object.
tuple(s) Converts a sequence s to a tuple.
list(s) Converts a sequence s to a list.
set(s) Converts an iterable s to a set (removes duplicates).
frozenset(s) Converts an iterable s to an immutable set.
dict(d) Creates a dictionary; d can be a sequence of key–value pairs (e.g., list of tuples).
chr(x) Converts an integer (Unicode code point) to the corresponding character.
ord(x) Converts a single character to its integer Unicode code point.
hex(x) Converts an integer to a lowercase hexadecimal string (prefixed with 0x).
oct(x) Converts an integer to an octal string (prefixed with 0o).
In [2]:
# Type conversion examples in Python 3

# Integer conversion
print(int("1010", 2))     # Binary to decimal -> 10
print(int(3.7))           # Float to int (truncates) -> 3

# Float conversion
print(float("2.75"))      # -> 2.75

# Complex number
print(complex(3, 4))      # -> (3+4j)

# String conversion
print(str(123))           # -> '123'
print(repr([1, 2, 3]))    # -> '[1, 2, 3]'

# Tuple, list, and set
print(tuple([1, 2, 3]))   # -> (1, 2, 3)
print(list("AI"))         # -> ['A', 'I']
print(set([1, 1, 2]))     # -> {1, 2}

# Dictionary
print(dict([('a', 1), ('b', 2)]))  # -> {'a': 1, 'b': 2}

# Character and Unicode
print(chr(97))            # -> 'a'
print(ord('A'))           # -> 65

# Number base conversions
print(hex(255))           # -> '0xff'
print(oct(8))             # -> '0o10'
10
3
2.75
(3+4j)
123
[1, 2, 3]
(1, 2, 3)
['A', 'I']
{1, 2}
{'a': 1, 'b': 2}
a
65
0xff
0o10
Category
Python Natural Language Processing Generative AI
Tag's
Python Natural Language Processing

Quick Links

  • Home
  • Tutorials
  • About Us
  • Contact Us

Tutorials

  • Python
  • Natural Language Processing
  • Generative AI

Tags

  • Python
  • Natural Language Processing

About Intensity Coding

  • Intensity Coding is your learning hub for Data Science, Machine Learning, Deep Learning, NLP, and Generative AI. From beginner to expert level, we offer clear tutorials, real-world examples, and up-to-date insights. Our content simplifies complex topics to help you grow in your AI journey.
Intensity Coding

© 2025 Intensity Coding. All Rights Reserved.

Privacy Policy Terms and Conditions Disclaimer