Intensity Coding
  • HOME
  • TUTORIALS
    • Python
    • Natural Language Processing
  • ABOUT US
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer

Python

Data Types in Python

Python
Python
  • Introduction To Python
  • Write Your First Python Program
  • Indentation And Comments in Python
  • Variables in Python
  • Data Types in Python
  • Booleans and Number in Python
  • Operators in Python
  • Mutable Vs Immutable Objects And Collection in Python
  • Python String
  • Python Lists
  • Python Tuples
  • Python Sets
  • Python Dictionaries
  • Python Control Statements
  • Python Functions
  • Python Lambda Functions
  • Python Regular Expressions (RegEx)
  • Python JSON

IC_Python_Tutorial-5_ Data_Types_in_Python.png

Python Data Types¶

  • Python is a dynamically-typed language, which means you don't need to explicitly declare the data type of a variable. Here are some of the most commonly used data types in Python:

Built-in Data Types¶

Type Name
Text Type str
Numeric Types int, float, complex
Sequence Types list, tuple, range
Mapping Type dict
Set Types set, frozenset
Boolean Type bool
Binary Types bytes, bytearray, memoryview
None Type NoneType

Text Type :

  • String
In [ ]:
a = "Hello World" #str
print(type(a))
<class 'str'>

Numeric Types:

  • int
  • float
  • Complex
In [ ]:
b = 30	#int
print(type(b))

c = 2.5	#float
print(type(c))

d = 2+1j	#complex
print(type(d))
<class 'int'>
<class 'float'>
<class 'complex'>

Sequence Types

  • List
  • Tuple
  • range
In [ ]:
e = ["train", "bus", "bike"]	#list
print(type(e))

f = ("train", "bus", "bike")	#tuple
print(type(f))

g = range(5)	#range
print(type(g))
<class 'list'>
<class 'tuple'>
<class 'range'>

Mapping Type

  • dict
In [ ]:
h = {"name" : "Raj", "age" : 30}	#dict
print(type(h))
<class 'dict'>

Set Types

  • set
  • frozenset
In [ ]:
i = {"train", "bus", "bike"}	#set
print(type(i))

j = frozenset({"train", "bus", "bike"})	#frozenset
print(type(j))
<class 'set'>
<class 'frozenset'>

Boolean Type

  • bool
In [ ]:
k = True	#bool
print(type(k))
<class 'bool'>

Binary Types

  • bytes
  • bytearray
  • memoryview
In [ ]:
l = b"Hi"	#bytes
print(type(l))

m = bytearray(10)	#bytearray
print(type(m))

n = memoryview(bytes(10))	#memoryview
print(type(n))
<class 'bytes'>
<class 'bytearray'>
<class 'memoryview'>

None Type

  • NoneType
In [ ]:
o = None	#NoneType
print(type(o))
<class 'NoneType'>

Python Type Casting¶

  • There may be times when you want to specify a type on to a variable. This can be done with type casting. Python is an object-orientated language, and as such it uses classes to define data types, including its primitive types.
  • You can convert one data type to another using constructors or type casting functions like int(), float(), str(), list(), etc. Here are some examples:

Text Type :

  • String
In [ ]:
a = str("Hello World")	#str
print(a)
print(type(a))
Hello World
<class 'str'>

Numeric Types:

  • int
  • float
  • Complex
In [ ]:
b = int(25)	#int
print(b)
print(type(b))

c = float(2.5)	#float
print(c)
print(type(c))

d = complex(2+1j)	#complex
print(d)
print(type(d))
25
<class 'int'>
2.5
<class 'float'>
(2+1j)
<class 'complex'>

Sequence Types

  • List
  • Tuple
  • range
In [ ]:
e = list(("train", "bus", "bike"))	#list
print(e)
print(type(e))

f = tuple(("train", "bus", "bike"))	#tuple
print(f)
print(type(f))

g = range(5)	#range
print(g)
print(type(g))
['train', 'bus', 'bike']
<class 'list'>
('train', 'bus', 'bike')
<class 'tuple'>
range(0, 5)
<class 'range'>

Mapping Type

  • dict
In [ ]:
h = dict(name="Raj", age=30)	#dict
print(h)
print(type(h))
{'name': 'Raj', 'age': 30}
<class 'dict'>

Set Types

  • set
  • frozenset
In [ ]:
i = set(("train", "bus", "bike"))	#set
print(i)
print(type(i))

j = frozenset(("train", "bus", "bike"))	#frozenset
print(j)
print(type(j))
{'bike', 'train', 'bus'}
<class 'set'>
frozenset({'bike', 'train', 'bus'})
<class 'frozenset'>

Boolean Type

  • bool
In [ ]:
k = bool(5)	#bool
print(k)
print(type(k))
True
<class 'bool'>

Binary Types

  • bytes
  • bytearray
  • memoryview
In [ ]:
l = bytes(10)	#bytes
print(l)
print(type(l))

m = bytearray(10)	#bytearray
print(m)
print(type(m))

n = memoryview(bytes(10))	#memoryview
print(n)
print(type(n))
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
<class 'bytes'>
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
<class 'bytearray'>
<memory at 0x7f5709e10940>
<class 'memoryview'>

Python Scope¶

  • In Python, the term "scope" refers to the region of a program where a particular identifier (e.g., a variable or a function) is accessible.
  • Python has several levels of scope, including global scope, local scope, and nested scope. Let's explore these scopes in more detail:

Local Scope:¶

  • Variables defined within a function have local scope.
  • Local variables are only accessible within the function in which they are defined.
  • Variables with the same name can exist in different functions without causing conflicts because they are in different local scopes.
In [ ]:
def local_scope_example():
    local_variable = 5
    print(local_variable)

local_scope_example()
#print(local_variable)  # This would result in an error because local_variable is not defined in the global scope.
5
  • Function Inside Function : As explained in the example above, the variable x is not available outside the function, but it is available for any function inside the function
In [ ]:
def myfunc():
  x = 500
  print(x)
myfunc()
500
In [ ]:
# Function Inside Function
def myfunc():
  x = 300
  def myinnerfunc():
    print(x)
  myinnerfunc()

myfunc()
300

Global Scope:¶

  • Variables defined outside of any function or class have global scope. Global variables can be accessed from anywhere in the program, including within functions and classes.
  • To modify a global variable's value from within a function, you need to use the global keyword.
In [ ]:
global_variable = 10

def modify_global():
    global global_variable
    global_variable += 5

modify_global()
print(global_variable)  # Output: 15
15
  • Naming Variables : If you operate with the same variable name inside and outside of a function, Python will treat them as two separate variables, one available in the global scope (outside the function) and one available in the local scope (inside the function)
In [ ]:
x = 500

def myfunc():
  print(x)

myfunc()
print(x)
500
500
In [ ]:
x = 500

def myfunc():
  x = 600
  print(x)

myfunc()
print(x)
600
500
Category
Python Natural Language Processing
Tag's
Python Natural Language Processing

Quick Links

  • Home
  • Tutorials
  • About Us
  • Contact Us

Tutorials

  • Python
  • Natural Language Processing

Tag's

  • Python
  • Natural Language Processing

About Intensity Coding

  • Intensity Coding is your learning hub for Data Science, Machine Learning, Deep Learning, NLP, and Generative AI. From beginner to expert level, we offer clear tutorials, real-world examples, and up-to-date insights. Our content simplifies complex topics to help you grow in your AI journey.
Intensity Coding

© 2025 Intensity Coding. All Rights Reserved.

Privacy Policy Terms and Conditions Disclaimer